skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "He, Yongli"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Plants with crassulacean acid metabolism (CAM) are increasing in distribution and abundance in drylands worldwide, but the underlying drivers remain unknown. We investigate the impacts of extreme drought and CO2enrichment on the competitive relationships between seedlings ofCylindropuntia imbricata(CAM species) andBouteloua eriopoda(C4grass), which coexist in semiarid ecosystems across the Southwestern United States. Our experiments under altered water and CO2water conditions show thatC. imbricatapositively responded to CO2enrichment under extreme drought conditions, whileB. eriopodadeclined from drought stress and did not recover after the drought ended. Conversely, in well‐watered conditionsB. eriopodahad a strong competitive advantage onC. imbricatasuch that the photosynthetic rate and biomass (per individual) ofC. imbricatagrown withB. eriopodawere lower relative to when growing alone. A meta‐analysis examining multiple plant families across global drylands shows a positive response of CAM photosynthesis and productivity to CO2enrichment. Collectively, our results suggest that under drought and elevated CO2concentrations, projected with climate change, the competitive advantage of plant functional groups may shift and the dominance of CAM plants may increase in semiarid ecosystems. 
    more » « less